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ABSTRACT

As an initial attempt to introduce expert system
technology into an onboard environment, a model-based
diagnostic system developed using the TRW MARPLE
software tool was integrated with prototype flight
hardware and its corresponding control software.
Because this experiment was designed primarily to test
the effectiveness of the model-based reasoning

technique used, the expert system ran on a separate
hardware platform, and interactions between the control
software and the model-based diagnostics were limited.

While this project met its objective of demonstrating that
model-based reasoning can effectively isolate failures in
flight hardware, it also identified the need for an
integrated development path for expert system and
control software for onboard applications. In developing
expert systems that are ready for flight, we must
evaluate artificial intelligence techniques to determine
whether they offer a real advantage onboard, identify
which diagnostic functions should be performed by the

expert systems and which are better left to the
procedural software, and work closely with both the
hardware and the software developers from the beginning

of a project to produce a well-designed and thoroughly
integrated application.

INTRODUCTION

This paper discusses research at TRW aimed at
integrating artificial intelligence (AI) technology into an
on-board environment. The work described was a joint
effort of the Expert Systems on Spacecraft internal
research and development project, spacecraft power
system engineers, and flight software developers. The
goal of the project was to demonstrate an expert system
working in concert with on-board flight software and a
hardware testbed. This paper first discusses the nature
of AI and flight software, and issues involved in
integrating these two technologies. We then describe the
work performed at TRW and the results of the expert

system tests on the prototype power subsystem. We
conclude with a discussion of the problems encountered
and lessons learned from this work, and describe a
methodology for future integration of AI and onboard data
systems.

FLIGHT SOFTWARE AND EXPERT SYSTEMS

The design and development of onboard flight software is
driven by the limited capabilities of onboard hardware, the

high reliability required to ensure successful operations
in space for extended periods, and the deterministic
response times inherent in spacecraft control algorithms
[Filarey 90]. Required to operate in an extreme
environment, onboard data processing systems are
constructed of specialized parts designed to survive
radiation effects while minimizing size, weight and power

consumption. These systems do not provide the
throughput and memory capabilities found in ground-
based computer systems.

The software developed for onboard systems must also
maintain a very high level of reliability, and this places a
number of constraints on flight software design and
development. Flight software must be designed to be
testable; its reliability must be proven on the ground well
before launch. The tests performed on flight software

range from low-level unit testing, in which every machine
instruction and every path of each software module is
executed and tested, to spacecraft integration and
testing, where the entire spacecraft is assembled and
tested. To ensure that the software can be properly
tested, its design must be deterministic: given a set of
inputs, one must be able to pre-determine both the
required output and the path the software will take to
produce that output. Most spacecraft control algorithms
involve sampling spacecraft sensor data, analyzing the
data and sending commands to spacecraft units to
maintain stabilized control. The performance of these
algorithms depends on accurate scheduling based on
known delays between sensor samples and commanded
responses. Given these constraints, onboard flight
software is limited to those spacecraft functions which
are deterministic, efficient in memory use, executable
within a guaranteed time interval, and testable.

Typical candidates for onboard flight software include
basic spacecraft support functions such as attitude
control, thermal control and power management, and
spacecraft fault detection and management. Onboard
fault detection is limited to a set of predetermined faults
which can be diagnosed by a simple analysis of available
spacecraft sensor data. While in some cases the flight
software may be able to isolate the source of a fault and
switch to a redundant unit or alternative control scheme,

often the flight software reacts to an anomaly by placing

the spacecraft in a non-operational "safe-hold" mode,
relying on the ground to isolate and correct the fault.
Ground operators also control all mission planning and

operations, often through detailed, low-level command
sequences. As spacecraft missions require greater
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survivability, autonomy and complexity, this heavy
reliance on ground support must be alleviated by
software that can perform higher-level decision making
[Fesq 89].

Research in the field of AI has sought to increase the
capabilities of on-board software in the areas of
diagnosis, planning and scheduling. The potential
benefits of such research are many. Onboard diagnostic
and planning would allow spacecraft to achieve a high
level of autonomy, operating for months without ground
contact. More complex in-flight navigation could be
achieved with little ground control. Large systems such
as the Space Station Freedom could make better use of
available resources. In addition to increasing the
satellite's on-orbit capabilities, enhanced onboard
software could significantly reduce the cost of ground
ope rations.

While AI has made much progress in the years since rule-
based expert systems first became popular, these
advances have not generated a great deal of interest
among flight software developers. This results partially
from the fact that AI researchers are seldom the same

people who develop flight software, and the two groups
have markedly different approaches to software
development. AI systems are almost always built on
specialized workstations where memory and throughput
limits seldom impact performance. Even more
importantly, AI systems typically are designed to exhibit
novel behavior and respond to uncertain conditions.
Rule-based systems, for example, are designed to be
able to chain through rules in unexpected ways, and
often several paths may exist between a set of input and
output data. By their nature such systems are non-
deterministic and difficult to test. It is no wonder, then,
that when AI researchers emerge from their labs with their
latest prototype, the onboard software community issues
a collective yawn.

The fields of AI and flight software are both changing,
however, and the goal of our research is to understand
how these two software methodologies can be combined
to more effectively carry out the spacecraft mission.
More deterministic expert system techniques, such as
model-based reasoning, are now in use operationally. A
growing sub-field of AI is actively researching methods
for developing testable applications. In areas outside of
onboard processing, including commercial applications
and ground software, AI has been successfully
integrated with conventional software. In fact, in the
ground-based domain, AI is fast becoming just another
tool in a programmer's repertoire. As more powerful
processors and larger memories migrate onboard, the
flight software environment will no longer be so highly
constrained and onboard software will be able to take
advantage of applicable AI techniques.

SYSTEM DEVELOPMENT

As an initial attempt to introduce expert system
technology into an onboard environment, a model-based
diagnostic system was integrated with prototype flight
hardware and software. This work demonstrated the
ability of a model-based expert system to isolate

hardware faults. It further showed that an expert system
could be effectively integrated with conventional flight
software to produce a significant improvement in
diagnostic capabilities. For purposes of this
demonstration, the testbed hardware and software were
also required to operate independently of the expert
system. We therefore chose a loosely-coupled software
architecture, which limited the amount of communication
and cooperation possible between the flight code and the
expert system. While this system met all of our initial
goals, its limitations have taught us that tighter
integration between conventional and AI-based code is
needed for a realistic onboard system.

The prototype flight hardware and software illustrated in
Figure 1 were developed as part of an advanced concept
power subsystem project. The hardware testbed
included power control electronics, a solar array
simulator, spacecraft batteries, current and voltage
sensors, and a 1750A instruction set architecture (ISA)
onboard processor. While the testbed was being
assembled, the associated power control software was
developed in 1750A assembly language on an HP9000
workstation. The power control software included sensor
processing functions, a control algorithm to ensure
constant battery charge while preventing overcharge,
command output functions, and limited fault management
capabilities. Once the testbed was assembled and the
flight software was completely developed, the code was
downloaded to the onboard processor and the hardware
and software were integrated and tested.

Although the expert system was planned as part of the
demonstration system from its inception, the flight
software and the expert system were considered two
separate efforts, each with its own development team.
The expert system was a model-based diagnostic system
developed on a Texas Instruments microExplorer using
MARPLE, an in-house model-based expert system shell
[Cowles 90; Fesq 91]. The MARPLE shell implements a
model-based reasoning technique known as constraint
suspension. This technique, developed in the MIT AI
Lab, does not attempt to model the behavior of failed
components. Instead, it constrains the values placed at
system components based on a series of transfer
functions and systematically suspends these
assumptions to isolate a failed component [Davis 88].

MARPLE is a LiSP-based tool containing all the functions
necessary to run a model-based diagnostic system: the
user need only supply models of the system to be
monitored. For this experiment, we developed
hierarchical models of the power testbed, including a top-
level model of the entire testbed and more detailed
models of the power distribution electronics and the solar
array simulators. Graphical representations of these
models were developed for the expert system user
interface shown in Figure 2. After the models were coded
using MARPLE's high-level model definition language, the
expert system was tested using a VAX-based power
system simulator. This simulator allowed us to test the
operation of the expert system before integration with the
hardware testbed, and also allowed us to exercise the
system against a wider range of faults than was possible
on the actual hardware.
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Communication between the flight software and the
expert system was designed to be minimal and to be
compatible with the flight software's existing command
and telemetry capabilities. A one-way communication
scheme was designed in which the flight software
periodically sent packets of information containing
spacecraft sensor data to the expert system. The expert
system converted this raw data stream into voltage and
current readings before processing it through the

MARPLE models. A full-duplex mode of operation was
planned but never executed, in which the expert system
would send messages back to the flight software,
indicating which unit had failed and allowing the flight
software to bypass the. fault. The diagnostic capabilities
of the expert system were not designed to be integrated
with the flight software, but were intended to augment or
replace the flight software's fault management
capabilities.

values and data were collected. This information was

analyzed and the expert system models were modified
appropriately. Most modifications involved changing
scale factors in the model's equations, although in the
case of the power control electronics, a new set of
models had to be developed to reflect the component's
actual behavior. Data analysis and off-line calibration
lasted about two months. This period could have been
shortened if contention for use of the testbed had not

delayed the data collection process.

After the off-line calibration was complete, we linked the

expert system to the flight software and began on-line
calibration. An RS-232 link was established between the

spacecraft processor and the microExplorer. Every 25
ms the power control software sent testbed sensor data
to the expert system. The model-based system was first
tested with nominal testbed data (no faults) to assure
that it was correctly monitoring the testbed performance.
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Figure 1. The Advanced Concept Power Subsystem Testbed

Only after the flight hardware, software and expert
system were fully developed and tested did we begin
integrating the expert system with the prototype power
subsystem. The first step in this integration was the
calibration of the expert system models to the hardware
testbed. Because the simulator used to perform the
initial tests on the expert system was developed before
the test hardware was available, it was based on

idealized models of the power system behavior.
Needless to say, these theoretical simulations did not
always adequately reflect the actual performance of
testbed components. Once the testbed was operational,
each component was exercised through the range of its

Although the expert system models were not extremely
accurate (most components were modeled within one to
three percent of their actual values), the expert system
was able to monitor the testbed's performance without
producing any false alarms. The expert system was now
ready to diagnose failures.

Prior to integration, we identified several typical on-orbit
faults which could be safely simulated on the hardware.
The faults tested included open and short circuit failures
in the power control electronics, open circuit battery
cells, shadowed solar arrays and failed sensors. These
faults were injected into the testbed during a normal
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system run and the expert system's performance was
monitored. In most cases, the expert system was able to

diagnose the fault immediately, displaying its
conclusions on the graphical user interface.

RESULTS

Through a series of extensive tests, we proved that the
model-based technique is capable of diagnosing
hardware faults. Table 1 summarizes the faults that we

injected in the testbed and the ability of the expert
system to isolate the source of each failure. A majority of
the test cases involved open or short circuit failures in
the power control electronics since these failures may be
easily injected in the hardware by removing a fuse, or by
connecting the output of a solar array simulator directly

to the output of the power control electronics. Over the
range of operation for which the expert system was
calibrated, it diagnosed the correct unit in two-thirds of
the open circuit test cases, and isolated the fault to
correct string of the power control electronics in the

remaining cases. Additional open circuit tests were
performed in the battery overcharge region, for which no
calibration data was available. As might be expected, the
diagnostic system fared poorly in this region, correctly
identifying less than 50 percent of the faults. In the short
circuit tests, however, the expert system performed well

i Flle Edlt Marple

in both the overcharge and normal operation modes. In
both of these regions of operation, the model-based

technique was able to correctly identify the faulty string
each time a short circuit failure was induced. In 66

percent of the short circuit test cases, the expert system
was able to isolate the fault to the component level.

Tests were performed with failures injected in the solar
array simulators to verify the ability of the expert system
to distinguish between solar array and power control
electronics failures. Open, short and shadowed solar
array cells were induced in the testbed by programming
the solar array simulators with the skewed
characteristics of these failures. Since simulation was

the the only means of causing these failures, test cases
were not as extensive as with hardware induced failures.

The expert system was able to isolate a failed string of
the solar array for each type of fault induced. Although
successful, test cases of battery failures were
necessarily limited because of the inherent danger of
introducing short or open circuits in battery cells. (An
explosion of a 48V battery would have been detected by
the expert system, but the test conductors may not have
survived to document the results.)

Although the flight software and the expert system
development efforts were segregated, communication
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Figure 2. MARPLE User Interface developed for the advanced power testbed.
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between the hardware, software and expert system
personnel was strong throughout the life of the project.
The expert system developers participated in weekly
project meetings and were co-located in the same lab as
the hardware and flight software developers. The testbed
engineers, although busy, were interested in the expert
system project and willing to answer questions. This
close communication contributed to the relative ease with

which the expert system was integrated with the
hardware and flight software.

Another factor which helped smooth the integration effort
was the extensive off-line calibration performed on the
expert system using testbed data. Long hours were
spent acquiring performance data, analyzing the results,
and adjusting the expert system models as necessary.
Having models which accurately represented the
hardware proved invaluable in reducing the schedule
required to test the expert system. From the start of on-
line testing, the expert system was able to model the
behavior of the testbed, allowing us to proceed with the
test cases rather than refining the models for each fault
injected. The importance of off-line calibration is
apparent in our test results. The expert system was
much less accurate in regions for which inadequate
calibration data was available, such as at very high
battery voltages.

The competition for time on the testbed hardware made
off-line calibration even more critical. The hardware
designers needed the testbed to validate their design and
acquire performance data; flight software developers
were required to verify the execution of their control
algorithms on the actual hardware. Expert system
developers were allocated any remaining time for
calibration and testing. Conducting the data analysis and
model adjustment off-line limited system contention and
allowed the hardware and software developers to
complete their tasks with little impact from the
introduction of the expert system.

The fault diagnosis capabilities of the expert system were
a significant improvement over those designed for the
flight software. The flight software fault management
capabilities were limited to reacting to faults by switching
on additional circuitry: while it could identify broad
classes of faults and initiate recovery strategies, the
flight software could not identify exactly which
component had failed. The expert system was able to
identify not only what component failed, but in some
cases it could characterize the nature of that failure (for
example, a short-circuit versus an open-circuit failure in
the power control electronics). The expert system also
proved more adept at diagnosing sensor failures,
immediately identifying the failed sensor, as opposed to
the lengthy (and inconclusive) isolation algorithm
implemented in the control software.

Although the expert system demonstrated more
advanced fault detection and isolation capabilities than
the flight software, much of the fault management
processing performed by the two systems proved to be
redundant. For demonstration and testing, this
redundancy served a useful purpose; it allowed us to

compare the performance of the expert system to the
standard fault detection and isolation techniques used by
the flight software. While some redundancy might be
beneficial in an onboard system, the overlap between our
expert system and flight software reflected the
segregated development efforts and was too inefficient
for use onboard. If the design of the two systems had
been more coordinated, the fault diagnostic capabilities
of the expert system could have become an integral
component of the flight software's fault management
scheme. Instead, the flight software developers
designed a standard technique of analyzing spacecraft
sensor data and determining faults while the expert
system developers analyzed the same data using model-
based reasoning with the same end goal -- diagnosing
failures in the hardware.

By the completion of our research, we had made
significant progress in proving the ability of model-based
reasoning to diagnose hardware failures. This success
was based on the development of two distinct working
systems -- a prototype flight hardware and software
system which successfully demonstrated a new concept
in power control, and a model-based expert system which
could isolate faults in the power system. Any attempt to
integrate both systems on a single spacecraft processor,
however, would require significant redesign of both
systems. The control software would have to be modified
to take full advantage of the expert system's fault
diagnostics and ensure that data required by both the
expert system and flight software were properly
managed. The expert system would have to be
streamlined to run on a target machine with limited
throughput and memory and would have to be converted
to a language supported by the spacecraft processor.

DISCUSSION

Although we tested our expert system extensively
against both the software simulator and the actual
testbed, these tests did not begin to meet the rigorous
standards required for flight software. Because it was
designed as a demonstration, not a flight system, low-
level unit verification tests were not performed on the
expert system. Given the relatively structured nature of
the model-based reasoning approach used, unit testing
could have been successfully performed on most of the
expert system code. It is doubtful, however, that all
possible execution paths could have been tested under
realistic project budget constraints. Similarly, while the
expert system performed well against both the simulator
and the hardware, its reliability was not proven to be
appropriate for onboard use. Again, it is important to
realize that this system was designed as a
demonstration. An onboard application would have been
designed to achieve a higher level of reliability, and
calibration and testing would have been more extensive.
However, while more thorough testing and calibration
undoubtedly would have increased the system's
reliability, the size and potential number of execution
paths through the expert system would have prevented
standard testing methods from adequately measuring
this reliability.
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Current research at TRW seeks to develop new
verification and reliability assessment methods for this
type of model-based system based on a mathematical
analysis of the expert system's properties. Additionally,
the expert system used for this project has been
redesigned and recoded in Ada, and hosted on a 1750A
ISA processor. While such work eventually may prove
fruitful for introducing large scale flight-based expert
systems, our research suggests that such large, loosely
coupled applications may not be the most effective use
of AI onboard. For many applications, a tighter coupling
of AI and procedural code tailored to the particular
problem at hand would be more effective. In such a
system, traditional procedural code would be enhanced
by small, embedded applications of AI-based techniques.
Because these small model- or rule-based modules would
have a limited number of execution paths, they could be
verified through standard methods. Such an approach
could be used to avoid unnecessary redundancy and
capitalize on the strengths of each programming
technique. This embedded approach would also eliminate
the need to redesign and rehost a ground-based
prototype to run on a flight processor. If AI sections of
code were designed and developed as part of an

integrated flight software development effort, such
problems as processor contention, communication, and
integration could be simplified and a more powerful flight
software package would result.

At the conclusion of our project, a team of expert system
and flight software developers revisited the control
software requirements and design. As part of this effort,
the AI personnel conducted a detailed study of the flight
software's goals and design, and the flight software
engineers assessed the strengths and limitations of the
expert system. The team then worked together to
identify several sets of requirements which might be
better served by AI-derived techniques than by
procedural code. These included battery recharge ratio
adjustment, optimizing peak power tracking, sensor
consistency checking, performance prediction and
monitoring the pattern of controller faults. In each of
these cases, the AI-technique would have been more
efficient, more accurate or more flexible than the
procedural implementation. Also, each of these mini-
applications of AI would be well-defined, so that its
performance could be thoroughly characterized through
test procedures. Were this sort of analysis to be
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performed in the initial design phase, AI research could
begin to benefit onboard software without violating its
constraints.

The migration of AI technology onboard will require many
changes from the methods typically used in developing
spacecraft data systems. These changes will not occur
without complete support of project management.
Although flight software developers today require a
knowledge of general hardware characteristics such as
sampling delays and sensor accuracies, the calibrated
models of an expert system require more in-depth
knowledge of the hardware. Acquiring adequate data
requires the commitment of the hardware designers and
test engineers, as well as project managers who must
assure that sufficient time is allocated on the hardware
test system. As was evident during our research, many
diverse tasks must be performed on the equipment, and
priorities must be established to efficiently use this
limited resource. The problem exists today and will only
increase with the added competition for use of the
hardware by expert system developers.

CONCLUSIONS

Al's migration onboard may not be accomplished through
one giant leap, but rather in a series of small steps. As
spacecraft systems and missions become more complex
and demand greater autonomy, more high-level control
functions will be carried out by the onboard software. AI
research is seeking to automate many of the high-level
applications such as diagnosis and planning that are now
performed on the ground. In our research we have shown
that a model-based expert system can interact with
prototype flight software and correctly identify several
hardware faults. However, this system and other large
scale AI prototypes cannot yet meet the verification and
validation requirements and other restrictions imposed by
the highly constrained onboard environment.

Eventually researchers will be able to verify their AI
systems and flight processors will grow sufficiently in
size and throughput to accommodate large expert
systems. However, even when feasible, porting these
full-scale AI systems onboard may not be the most
effective application of this technology. The loosely
coupled architecture developed for our application did not
allow the programs to take full advantage of each other's
capabilities and led to redundant processing. A tighter
integration of AI and conventional software in which each
technique is applied to those system requirements to
which it is best suited may be a more effective and easily
managed solution. This approach would require flight
software designers and AI software developers to work
together to produce onboard software capable of meeting
the needs of future spacecraft missions.
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